Calculating weighting factors for mixing megavoltage photon beams to achieve desirable dose distribution in Radiotherapy
Authors
Abstract:
Introduction: Many studies have shown the effects of delivered dose distribution due to the incident photon energy on the tumor and healthy tissues. The ability to access the most appropriate radiation energy is essential to achieve the optimal treatment planning but there is a serious limitation in number of energies available on radiation therapy machines can restrict it. Materials and Methods: In this research, Electa linear accelerator with 6, 10 and 18MV photon energies and MATLAB software for analytical calculations were applied. The percentage depth dose (PDD) was measured for 6, 10 and 18MV energies in different depths with source-surface distance (SSD) of 100 cm2 for 4×4 to 40×40 cm2 fields. A double exponential function was fitted to the PDDs curves of 6 and 18MV using MATLAB software. Then, using the quality factor equation presented by LaRivere et al. and combination of 6 and 18MV energies, weighting factors to achieve desirable energies for the field of 10×10 cm2 were calculated. To verify the accuracy of this analytical method, PDD of 10MV energy was measured using ion chamber. The PDD obtained from dosimetry of 10MV energy, was compared with the results of mixing 6 and 18MV energies using the gamma index. Moreover, the dosimetric characteristics such as dmax, d50%, d80% and PDD10cm obtained from the mixed energy were compared with ones obtained from the measurement. Results: The value of the weighting factor of 6MV energy needed for the 10 ×10cm2 field to create dose distribution of 10MV energy using the mix was obtained as equal to 0.57. The obtained results from the mix of 6 and 18 MV energies and dosimetry of 10MV had good compatibility. The gamma index with two criteria of the percent dose difference (∆dM = 0.2cm) and distance to agreement (∆DM = 2%), expect at the points near the edges of the geometric fields, show values less than 1. Conclusion: The simultaneous use of the high and low photon energies with different weighting factors to achieve desirable energy makes possible the treatment of tumors located at various depths without the need for different modes of energy in the accelerator and leads to decrease in the costs of the equipment.
similar resources
Calculating Weighting Factors for Mixing Megavoltage Photon Beams to Achieve Desirable Dose Distribution in Radiotherapy
Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated ...
full textEvaluation of uncertainty predictions and dose output for model-based dose calculations for megavoltage photon beams.
In many radiotherapy clinics an independent verification of the number of monitor units (MU) used to deliver the prescribed dose to the target volume is performed prior to the treatment start. Traditionally this has been done by using methods mainly based on empirical factors which, at least to some extent, try to separate the influence from input parameters such as field size, depth, distance,...
full textInvestigation of the effects of a carbon-fiber tabletop on the surface dose and attenuation dose for megavoltage photon beams
Background: Multiple beams are generally used with an increased possibility that the beam axis intersects the treatment table. Treatment tabletops are commonly made of carbon fiber due to its high mechanical strength and rigidity, low specific density, extremely light and low radiation beam attenuation properties. Purpose of this paper is investigated the dose changes in the buildup region and ...
full textA dosimetric intercomparison of megavoltage photon beams in UK radiotherapy centres.
A dosimetry intercomparison has been carried out for all 64 radiotherapy centres in the UK. Doses were measured with an ionization chamber in an epoxy resin water-substitute phantom of relatively simple geometry. Reference-point measurements were made for all MV photon beams. For 61 Co-60 beams, a mean ratio of measured-to-stated dose of 1.002 was observed with a standard deviation of 0.014, wh...
full textApplication of spherical diodes for megavoltage photon beams dosimetry.
PURPOSE External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detec...
full textIntermediate Megavoltage Photon Beams for Improved Lung Cancer Treatments
The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configurat...
full textMy Resources
Journal title
volume 15 issue Special Issue-12th. Iranian Congress of Medical Physics
pages 16- 16
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023